Haldane limits via Lagrangian embeddings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haldane limits via Lagrangian embeddings

In the present paper we revisit the so-called Haldane limit, i.e. a particular continuum limit, which leads from a spin chain to a sigma model. We use the coherent state formulation of the path integral to reduce the problem to a semiclassical one, which leads us to the observation that the Haldane limit is closely related to a Lagrangian embedding into the classical phase space of the spin cha...

متن کامل

Heavy Traffic Limits via Brownian Embeddings

For the GI0GI01 queue we show that the scaled queue size converges to reflected Brownian motion in a critical queue and converges to reflected Brownian motion with drift for a sequence of subcritical queuing models that approach a critical model+ Instead of invoking the topological argument of the usual continuousmapping approach, we give a probabilistic argument using Skorokhod embeddings in B...

متن کامل

Novikov-symplectic Cohomology and Exact Lagrangian Embeddings

We prove that if N is a closed simply connected manifold and j : L →֒ T ∗N is an exact Lagrangian embedding, then H2(N) → H2(L) is injective and the image of π2(L) → π2(N) has finite index. Viterbo proved that there is a transfer map on free loopspaces H∗(L0N) → H∗(L0L) which commutes under the inclusion of constant loops with the ordinary transfer map H∗(N) → H∗(L). This commutative diagram sti...

متن کامل

Mean Curvature Flow and Lagrangian Embeddings

In this note we provide examples of compact embedded lagrangians in Cn for any n ≥ 2 that under mean curvature flow develop singularities in finite time. When n is odd the lagrangians can be taken to be orientable. By gluing these lagrangians onto a special lagrangian embedding L we provide examples of compact embedded lagrangians in a Calabi-Yau manifold that under mean curvature flow develop ...

متن کامل

Linear embeddings of graphs and graph limits

Many real-life networks can be modelled by stochastic processes with a spatial embedding. In such processes, the link probability decreases with distance. Using the theory of graph limits, we show how to recognize graph sequences produced by random graph processes with a linear embedding (a natural embedding into R). We define an operator Γ which applies to graph limits, which assumes the value...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B

سال: 2012

ISSN: 0550-3213

DOI: 10.1016/j.nuclphysb.2011.10.005